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ABSTRACT
Recent research in demography focuses on linking population data to environ-
mental indicators. Satellite imagery can support such projects by providing data
at a large scale and a high frequency. Moreover, population surveys often provide
geolocations of households, yet sometimes with an offset, to guarantee data con-
fidentiality. In such cases, the proper management of this incertitude is required,
to accurately link environmental indicators such as land cover/land use maps or
spectral indices to population data. In this paper, we introduce a method based on
the random sampling of possible households geolocations around the coordinates
provided. Then, we link a land cover map generated using semi-supervised deep
learning and a Malaria Indicator Survey in Burkina Faso. After linking households
to their close environment, we distinguish several types of environment conducive
to high malaria rates, beyond the urban/rural dichotomy.

1 INTRODUCTION

Besides demographic data, population surveys often provide geolocations of interviewed house-
holds. For the Demographic and Health Survey (DHS) program1 and other surveys built with
a similar design, these geolocations are slightly displaced to preserve households confidentiality.
However, they allow linking households data to their close environment using derived spatial data
such as NDVI or more complete land classification schemes. The Local Climate Zones (LCZs)
(Stewart & Oke, 2012) is a land cover/land use classification system based on the surface physical
properties and human activities. LCZ classes describe different types of environment, as ”Compact
low-rise” cities, ”Sparsely built”, ”Scattered trees” and ”Bush/scrub” areas. This scheme can be
applied globally as it is not specific to any part of the World. Recent works on LCZ mapping use
machine learning techniques to train models that could be applied globally. Demuzere et al. (2022)
proposes a global LCZ map using random forests algorithms on 46 spatial features. The So2Sat
dataset proposed by Zhu et al. (2020) is a large-scale labeled dataset for training neural networks to
classify LCZs. It is made of 32x32 Sentinel-1/2 patches over 42 cities in various part of the world.
This dataset has been used to generate maps for 1642 cities, supporting environmental urban studies
(Zhu et al., 2022). Although on a large scale, this strategy does not produce optimal results on sub-
Saharan countries as few African cities were available in the training dataset. Recent works focus
on semi-supervised domain adaptation strategy based on sub-Saharan seasonal changes to produce
more accurate maps. This technique uses the So2Sat dataset and additional Sentinel-2 images to
adapt training to the mapping of these countries. It allows the creation of LCZ maps with a resolu-
tion of 320m, well below DHS buffer on households’ geolocations. Accurately linking such maps
and DHS-like population data would benefit from lowering the error made on the selection of the
close environment, due to geo-relocations. This work introduces a new method to model the envi-
ronment of households in DHS studies, and applies it to the Burkina Faso Malaria Indicator Survey
(MIS) of 2017-2018 (INSD, 2018). To this end, we first map the whole of Burkina Faso using the
LCZ classification scheme and the semi-supervised method. Then, we characterize the households’
local environment using randomly sampled areas, that are actual possibilities for their true location.
Finally, we show that environmental structures can be a determining factor of malaria prevalence in
Burkina Faso.

1https://dhsprogram.com
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2 DEMOGRAPHIC DATA

DHS buffer on geolocations. To produce representative indicators at a defined study-area level,
DHS surveys follow a two-stage sampling procedure: First, enumeration zones (EZs, areas can-
vassed by one census representative) are randomly sampled. Then, in each of the sampled EZs,
households are randomly selected for interviews (Burgert et al., 2013). Each household geolocation
is recorded and is grouped in its corresponding enumeration zone. Only coordinates of the centroid
of each enumeration zone are provided. To preserve the respondents’ confidentiality, they are ran-
domly displaced within a circle of 2-10 kilometers radius (2km in urban areas, 5 for most of the
rural enumeration areas with 1% only being displaced of up to 10 km) . The type (urban or rural) of
environment is specified. To link EZs to spatial data, DHS recommends to average environmental
values on this offset area (Perez-Heydrich et al., 2015). Grace et al. (2019) demonstrates that select-
ing environmental values of settlements near the DHS’ EZs geolocations is a better estimation than
averaging over the entire offset area. Other than manually, this selection can be done using gridded
population data such as the Global Human Settlement Layer (Pesaresi et al., 2015). However, this
method requires having reference data at the time of the study, which is not always the case are.

Malaria Indicator Survey 2017-2018, Burkina Faso. Malaria Indicator Surveys (MISs) are sur-
veys following the general DHS population studies sampling procedure. They focus on monitoring
malaria within the context of the global effort to fight this disease. MISs aim to estimate basic
demographic and health indicators about malaria as well as the population knowledge about this
disease. To this end, malaria rapid tests (giving results in 15 minutes) are done on all 6-59 months
old children of the sampled households, with the consent of their legal representatives. The positive
tests are confirmed by more reliable laboratory tests. In this paper, we use the MIS 2017-2018 in
Burkina Faso. In the survey, malaria prevalence results are representative for each of the 17 study
areas (administrative divisions). Among the 252 sampled EZs, 245 were visited. however, 21 of the
visited EZs have corrupted geolocations and cannot be used and only 224 EZs can be finally used
for analysis. We define the malaria rate Ri of the EZ i as the ratio of the number of positive 6-59
months old children by the total number of 6-59 months old children in the EZ i.

3 LOCAL CLIMATE ZONES MAPPING FOR SUB-SAHARAN AFRICA

Our objective is to extract environmental indicators from remote sensing images that can be linked
to malaria rate. We use the Local Climate Zones (LCZs) taxonomy which proposes 17 classes,
ranging from dense high-rise built-up areas to water areas. As mentioned in Section 1, training
neural networks in a supervised way is not sufficient for accurately predicting LCZs in sub-Saharan
countries. However, So2Sat can be used as a reference dataset for building semi-supervised learning
to reduce the divergence between a reference domain (i.e. a labeled dataset) and a target domain
(i.e. an unlabeled dataset). This type of strategy enables adding useful information to the training
without requiring additional labeled data. Sub-Saharan countries experience successive dry and
rainy seasons in a year which significantly change vegetation and the overall appearance of the
environment, observed by optical remote sensing images. We define DS = (xi, yi)i∈J1,nSK as
the labeled dataset where xi is a Sentinel-2 image from So2Sat, yi its associated LCZ label and
nS the number of samples in DS . Our strategy aims to make a model F (.) robust to seasonal
change, and learn seasonal features from countries’ seasonal changes. Therefore, we define DT =
(zs1i , zs2i )i∈J1,nT K made of nT pairs of unlabeled images zs1, zs2 from the same area at different
seasons s1 and s2. As Burkina Faso has one dry and one rainy season, each pair in DT uses images
of both seasons. These two datasets are combined with a consistency regularization approach and
contrastive learning. We employed a two tracks training, described in Algorithm 1, resulting in two
losses that are combined in a second stage. The first track is a regular supervised track using DS

where Cross-Entropy LS is computed. The second track uses contrastive learning based on DT

where zs2i is considered as a seasonal augmentation of zs2i similarly as in Mañas et al. (2021). The
contrastive loss LT is computed and combined with a weighted sum as follow:

LT (z
s1
i , zs2i ) = − log

exp(sim(F (zs1i ), F (zs2i ))/τ)∑2N
k=1,k ̸=i exp(sim(F (zs1i ), F (zs2k ))/τ)

(1)
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where N is the size of the batch, sim(·, ·) is a cosine similarity measure, τ is the temperature,
(i, j) ∈ J1, NK2, (zs1/2l )l∈J1,2NK samples from the batch, and (zs1i , zs2i ) a positive pair. The total
loss used for back-propagation is a weighted sum of the supervised and unsupervised losses, with a
regularization coefficient α ∈ [0, 1]: L = α× LS + (1− α)× LT .

Algorithm 1 Semi-supervised training step
1: for i = 1, 2, . . . , NS |j = 1, 2, . . . , NT do
2: Predict xi, zs1j , zs2j LCZ classes with

F (.)
3: Compute the Cross-Entropy LS and Con-

trastive Loss LT

4: L← α× LS + (1− α)× LT

5: Back-propagate L through F (.)
6: end for

Algorithm 2 EZs characterization
1: X← Random areas of all EZs
2: Separate X in clusters X1, X2, X3, X4

3: for i = 1, 2, . . . , NEZ do
4: Compute the mean LCZ distribution of

EZ i Mi

5: Predict the cluster of EZ i Mi with the
fuzzy-c-means

6: end for

To map Burkina Faso, we selected Sentinel-2 tiles taken during the time of the study, in early Jan-
uary 2018. The tiles are split into 32×32 patches for classification, and the model predictions are
reconstructed into the final LCZ map. Thus, the resolution of the LCZ map is 320m×320m. More
information about the mapping process is available in Rousse et al. (2023).

4 LINKING MAPS TO HOUSEHOLD GEOLOCATIONS

Our objective is to characterize the type of environment of each EZ using the LCZs computed with
the method presented in Section 3. We first model the EZs’ offset areas by circles centered on their
displaced centroids. As already mentioned, these circles have a radius of 2 km in urban areas or 10
km in rural areas. These circles will be referred to as Ck, k being the identifier of the EZ. For each
EZ k, we semi-randomly sample nrandom squared areas of size A (in the 320m× 320m resolution
LCZ map) inside Ck to model the potential true geolocations of interviewed households. These
nrandom random areas should have at least δ% of LCZs belonging to their urban or rural type to
ensure the sampling consistency. This sampling procedure results in a total of nsampled random
areas sampled from all EZs. These nsampled samples give a global view on the local environment
in which the household were interviewed. We propose to summarize local environments into nE

typical environments. To achieve this categorization, the nsampled samples are clustered into nE

clusters. Finally, we want to characterize the environment of each EZ. The mean LCZ distribution
of an EZ k is computed by taking the mean proportion of each LCZ class within all the random areas
selected inside Ck. Then, we separate EZs into the nE types of environment defined by the clustering
step described above, using their mean LCZ distributions. We applied this method to the Burkina
Faso MIS 2017-2018 and a LCZ map generated using the method presented in 3. In this paper, we
use nrandom = 10 and A = 100m, which results in a total of 2240 random areas sampled. These
areas are clustered using the fuzzy-c-means algorithm (Bezdek et al., 1984) into nE = 4 typical
environments. The distributions of the clustering centers are shown in Figure 1. As expected, the 4
clusters are highly dominated by one single LCZ class. Cluster 3 and 4 are rural clusters dominated
by bush/scrub and scattered trees areas, cluster 1 is highly urban with compact low-rise (cities) and
cluster 2 is in between rural and urban with sparely built areas. A 2D representation computed using
the t-SNE algorithm (van der Maaten & Hinton, 2008) of the EZs LCZ distribution is shown in
Figure 1.

5 APPLICATION: LINKING MALARIA TO HOUSEHOLD ENVIRONMENTS

To explore a possible link between environmental indicators and malaria prevalence, we considered
malaria rates computed using MIS data. We plot in Figure 2 the distributions of these malaria rates
grouped in the nE = 4 types of environment defined in Section 4 and described in Figure 1. We
used δ = 0.9. Malaria rates distributions differ according to the type of environment. The definition
of such clusters using the LCZ classification goes beyond the urban/rural dichotomy and enables
identifying different structures where the propagation of malaria is higher. The urban clusters 1 and
2, respectively focused on ”compact-low-rise” and ”sparsely-built”, have lower malaria rates than
the rural ones. Malaria rates of EZs in cluster 4 bush/scrub are not concentrated in a particular range
but are distributed over the entire range of values. This class is widely represented on the Burkina
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Figure 1: LCZ distributions of clustering centers (left) and visualisation of EZs, grouped by envi-
ronment types as defined by the clustering step. The visualization has been done using t-SNE.

Faso LCZ map, which implies that it is very represented in our randomly selected areas. This results
in about half of the available EZs being associated to this cluster. Nevertheless, as depicted in Figure
2 , the proportion of EZs belonging to cluster 3 is increasing when the malaria rates are increasing.
We performed an independence t-test to look at the statistical difference between clusters, based on
their malaria rate distributions. Values are shown in Table 1. All are statistically different according
to this method except for the rural clusters 3 and 4. The LCZ classification enables distinguishing
the types of environment where malaria propagation is lower, or higher. Further developments are
required for distinguishing, if possible, scattered trees and bush-scrub areas.

Table 1: Independence t-test results
p-values Cst1 Cst2 Cst3 Cst4
Cst1 1 0 0 0
Cst2 x 1 0.004 0.033
Cst3 x x 1 0.160
Cst4 x x x 1

t-values Cst1 Cst2 Cst3 Cst4
Cst1 0 7.706 9.223 11.899
Cst2 x 0 3.004 2.151
Cst3 x x 0 -1.433
Cst4 x x x 0

Figure 2: Distribution of EZs malaria rates grouped by cluster (left) and proportion of malaria rates,
grouped by cluster and by intervals.

6 CONCLUSION

In this paper, we introduce a new method to model households geo-relocations on DHS surveys.
We based our method on a semi-random sampling of small areas within DHS offset areas, which
are possible real close environment of interviewed households. Then, we applied this method to
link the LCZ environment classification scheme to the MIS survey in Burkina Faso. This method,
when linked with a LCZ map, was able to distinguish different environmental structures where
malaria propagation is either higher or lower. Further development on the mapping and incertitude
management must be done to clarify these distinctions.
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(ANR-18-IDEX-0001). This work was performed using HPC resources from GENCI-IDRIS (Grant
2021-AD011013527).

4



Published as a conference paper at ICLR 2023

REFERENCES

James C. Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means clustering algo-
rithm. Computers Geosciences, 10(2):191–203, 1984. ISSN 0098-3004. doi: https://doi.org/
10.1016/0098-3004(84)90020-7. URL https://www.sciencedirect.com/science/
article/pii/0098300484900207.

Clara Burgert, Josh Colston, Thea Roy, and Blake Zachary. Geographic displacement procedure and
georeferenced data release policy for the demographic and health surveys. 2013. doi: 10.13140/
RG.2.1.4887.6563.

M. Demuzere, J. Kittner, A. Martilli, G. Mills, C. Moede, I. D. Stewart, J. van Vliet, and
B. Bechtel. A global map of local climate zones to support earth system modelling and
urban-scale environmental science. Earth System Science Data, 14(8):3835–3873, 2022. doi:
10.5194/essd-14-3835-2022. URL https://essd.copernicus.org/articles/14/
3835/2022/.

Kathryn Grace, Nicholas N. Nagle, Clara R. Burgert-Brucker, Shelby Rutzick, David C. Van Riper,
Trinadh Dontamsetti, and Trevor Croft. Integrating environmental context into dhs analysis while
protecting participant confidentiality: A new remote sensing method. Population and Develop-
ment Review, 45:1, 2019.

INSD. Enquête sur les indicateurs du paludisme au burkina faso. 2018. URL https://
dhsprogram.com/pubs/pdf/MIS32/MIS32.pdf.
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